Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(5): e0176223, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563762

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and is responsible for the largest human pandemic in 100 years. Thirty-four vaccines are currently approved for use worldwide, and approximately 67% of the world population has received a complete primary series of one, yet countries are dealing with new waves of infections, variant viruses continue to emerge, and breakthrough infections are frequent secondary to waning immunity. Here, we evaluate a measles virus (MV)-vectored vaccine expressing a stabilized prefusion SARS-CoV-2 spike (S) protein (MV-ATU3-S2PΔF2A; V591) with demonstrated immunogenicity in mouse models (see companion article [J. Brunet, Z. Choucha, M. Gransagne, H. Tabbal, M.-W. Ku et al., J Virol 98:e01693-23, 2024, https://doi.org/10.1128/jvi.01693-23]) in an established African green monkey model of disease. Animals were vaccinated with V591 or the control vaccine (an equivalent MV-vectored vaccine with an irrelevant antigen) intramuscularly using a prime/boost schedule, followed by challenge with an early pandemic isolate of SARS-CoV-2 at 56 days post-vaccination. Pre-challenge, only V591-vaccinated animals developed S-specific antibodies that had virus-neutralizing activity as well as S-specific T cells. Following the challenge, V591-vaccinated animals had lower infectious virus and viral (v) RNA loads in mucosal secretions and stopped shedding virus in these secretions earlier. vRNA loads were lower in these animals in respiratory and gastrointestinal tract tissues at necropsy. This correlated with a lower disease burden in the lungs as quantified by PET/CT at early and late time points post-challenge and by pathological analysis at necropsy.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the largest human pandemic in 100 years. Even though vaccines are currently available, countries are dealing with new waves of infections, variant viruses continue to emerge, breakthrough infections are frequent, and vaccine hesitancy persists. This study uses a safe and effective measles vaccine as a platform for vaccination against SARS-CoV-2. The candidate vaccine was used to vaccinate African green monkeys (AGMs). All vaccinated AGMs developed robust antigen-specific immune responses. After challenge, these AGMs produced less virus in mucosal secretions, for a shorter period, and had a reduced disease burden in the lungs compared to control animals. At necropsy, lower levels of viral RNA were detected in tissue samples from vaccinated animals, and the lungs of these animals lacked the histologic hallmarks of SARS-CoV-2 disease observed exclusively in the control AGMs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Virus del Sarampión , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Chlorocebus aethiops , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Virus del Sarampión/inmunología , Virus del Sarampión/genética , Vacunas contra la COVID-19/inmunología , Humanos , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Vectores Genéticos , Células Vero , Pandemias/prevención & control , Femenino , Betacoronavirus/inmunología , Betacoronavirus/genética , Neumonía Viral/prevención & control , Neumonía Viral/virología , Neumonía Viral/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Vacunas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/administración & dosificación , Modelos Animales de Enfermedad
3.
Nat Microbiol ; 8(11): 2080-2092, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814073

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the most common cause of death in people living with human immunodeficiency virus (HIV). Intra-dermal Bacille Calmette-Guérin (BCG) delivery is the only licensed vaccine against tuberculosis; however, it offers little protection from pulmonary tuberculosis in adults and is contraindicated in people living with HIV. Intravenous BCG confers protection against Mtb infection in rhesus macaques; we hypothesized that it might prevent tuberculosis in simian immunodeficiency virus (SIV)-infected macaques, a model for HIV infection. Here intravenous BCG-elicited robust airway T cell influx and elevated plasma and airway antibody titres in both SIV-infected and naive animals. Following Mtb challenge, all 7 vaccinated SIV-naive and 9 out of 12 vaccinated SIV-infected animals were protected, without any culturable bacteria detected from tissues. Peripheral blood mononuclear cell responses post-challenge indicated early clearance of Mtb in vaccinated animals, regardless of SIV infection. These data support that intravenous BCG is immunogenic and efficacious in SIV-infected animals.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Tuberculosis , Animales , Humanos , Vacuna BCG , Macaca mulatta , Leucocitos Mononucleares , Vacunación
4.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37333343

RESUMEN

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - can act as a mechanism-based enzyme reporter in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-specific processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-specific, clinical diagnostic candidate. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either bespoke radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.

5.
Res Sq ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37090620

RESUMEN

Tuberculosis (TB) is the most common cause of death in people living with HIV. BCG delivered intradermally (ID) is the only licensed vaccine to prevent TB. However, it offers little protection from pulmonary TB in adults. Intravenous (IV) BCG, but not ID BCG, confers striking protection against Mycobacterium tuberculosis (Mtb) infection and disease in rhesus macaques. We investigated whether IV BCG could protect against TB in macaques with a pre-existing SIV infection. There was a robust influx of airway T cells following IV BCG in both SIV-infected and SIV-naïve animals, with elevated antibody titers in plasma and airways. Following Mtb challenge, all 7 SIV-naïve and 9 out of 12 SIV-infected vaccinated animals were completely protected, without any culturable bacilli in their tissues. PBMC responses post-challenge indicated early clearance of Mtb in vaccinated animals regardless of SIV infection. These data support that IV BCG is immunogenic and efficacious in SIV-infected animals.

6.
Immunity ; 55(5): 827-846.e10, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35483355

RESUMEN

Mycobacterium tuberculosis lung infection results in a complex multicellular structure: the granuloma. In some granulomas, immune activity promotes bacterial clearance, but in others, bacteria persist and grow. We identified correlates of bacterial control in cynomolgus macaque lung granulomas by co-registering longitudinal positron emission tomography and computed tomography imaging, single-cell RNA sequencing, and measures of bacterial clearance. Bacterial persistence occurred in granulomas enriched for mast, endothelial, fibroblast, and plasma cells, signaling amongst themselves via type 2 immunity and wound-healing pathways. Granulomas that drove bacterial control were characterized by cellular ecosystems enriched for type 1-type 17, stem-like, and cytotoxic T cells engaged in pro-inflammatory signaling networks involving diverse cell populations. Granulomas that arose later in infection displayed functional characteristics of restrictive granulomas and were more capable of killing Mtb. Our results define the complex multicellular ecosystems underlying (lack of) granuloma resolution and highlight host immune targets that can be leveraged to develop new vaccine and therapeutic strategies for TB.


Asunto(s)
Mycobacterium tuberculosis , Fibrosis Pulmonar , Tuberculosis , Animales , Ecosistema , Granuloma , Pulmón , Macaca fascicularis , Fibrosis Pulmonar/patología
7.
J Immunol ; 207(1): 175-188, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34145063

RESUMEN

Tuberculosis (TB) is the leading infectious cause of death among people living with HIV. People living with HIV are more susceptible to contracting Mycobacterium tuberculosis and often have worsened TB disease. Understanding the immunologic defects caused by HIV and the consequences it has on M. tuberculosis coinfection is critical in combating this global health epidemic. We previously showed in a model of SIV and M. tuberculosis coinfection in Mauritian cynomolgus macaques (MCM) that SIV/M. tuberculosis-coinfected MCM had rapidly progressive TB. We hypothesized that pre-existing SIV infection impairs early T cell responses to M. tuberculosis infection. We infected MCM with SIVmac239, followed by coinfection with M. tuberculosis Erdman 6 mo later. Although similar, TB progression was observed in both SIV+ and SIV-naive animals at 6 wk post-M. tuberculosis infection; longitudinal sampling of the blood (PBMC) and airways (bronchoalveolar lavage) revealed a significant reduction in circulating CD4+ T cells and an influx of CD8+ T cells in airways of SIV+ animals. At sites of M. tuberculosis infection (i.e., granulomas), SIV/M. tuberculosis-coinfected animals had a higher proportion of CD4+ and CD8+ T cells expressing PD-1 and TIGIT. In addition, there were fewer TNF-producing CD4+ T cells in granulomas of SIV/M. tuberculosis-coinfected animals. Taken together, we show that concurrent SIV infection alters T cell phenotypes in granulomas during the early stages of TB disease. As it is critical to establish control of M. tuberculosis replication soon postinfection, these phenotypic changes may distinguish the immune dysfunction that arises from pre-existing SIV infection, which promotes TB progression.


Asunto(s)
Granuloma/inmunología , Mycobacterium tuberculosis/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Linfocitos T/inmunología , Tuberculosis/inmunología , Factores de Necrosis Tumoral/inmunología , Animales , Biomarcadores/análisis , Linfocitos T CD8-positivos/inmunología , Macaca , Virus de la Inmunodeficiencia de los Simios/inmunología
8.
PLoS Pathog ; 16(9): e1008903, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32946524

RESUMEN

Vaccines are urgently needed to combat the global coronavirus disease 2019 (COVID-19) pandemic, and testing of candidate vaccines in an appropriate non-human primate (NHP) model is a critical step in the process. Infection of African green monkeys (AGM) with a low passage human isolate of SARS-CoV-2 by aerosol or mucosal exposure resulted in mild clinical infection with a transient decrease in lung tidal volume. Imaging with human clinical-grade 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) co-registered with computed tomography (CT) revealed pulmonary lesions at 4 days post-infection (dpi) that resolved over time. Infectious virus was shed from both respiratory and gastrointestinal (GI) tracts in all animals in a biphasic manner, first between 2-7 dpi followed by a recrudescence at 14-21 dpi. Viral RNA (vRNA) was found throughout both respiratory and gastrointestinal systems at necropsy with higher levels of vRNA found within the GI tract tissues. All animals seroconverted simultaneously for IgM and IgG, which has also been documented in human COVID-19 cases. Young AGM represent an species to study mild/subclinical COVID-19 disease and with possible insights into live virus shedding. Future vaccine evaluation can be performed in AGM with correlates of efficacy being lung lesions by PET/CT, virus shedding, and tissue viral load.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/diagnóstico por imagen , Tracto Gastrointestinal/virología , Neumonía Viral/diagnóstico por imagen , Esparcimiento de Virus/fisiología , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Pulmón/patología , Pulmón/virología , Pandemias , Neumonía Viral/virología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , SARS-CoV-2
9.
J Vis Exp ; (127)2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28930979

RESUMEN

Mycobacterium tuberculosis remains the number one infectious agent in the world today. With the emergence of antibiotic resistant strains, new clinically relevant methods are needed that evaluate the disease process and screen for potential antibiotic and vaccine treatments. Positron Emission Tomography/Computed Tomography (PET/CT) has been established as a valuable tool for studying a number of afflictions such as cancer, Alzheimer's disease, and inflammation/infection. Outlined here are a number of strategies that have been employed to evaluate PET/CT images in cynomolgus macaques that are infected intrabronchially with low doses of M. tuberculosis. Through evaluation of lesion size on CT and uptake of 18F-fluorodeoxyglucose (FDG) in lesions and lymph nodes in PET images, these described methods show that PET/CT imaging can predict future development of active versus latent disease and the propensity for reactivation from a latent state of infection. Additionally, by analyzing the overall level of lung inflammation, these methods determine antibiotic efficacy of drugs against M. tuberculosis in the most clinically relevant existing animal model. These image analysis methods are some of the most powerful tools in the arsenal against this disease as not only can they evaluate a number of characteristics of infection and drug treatment, but they are also directly translatable to a clinical setting for use in human studies.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tuberculosis/diagnóstico por imagen , Animales , Macaca , Mycobacterium tuberculosis/aislamiento & purificación , Primates , Tuberculosis/tratamiento farmacológico , Tuberculosis/patología
10.
Comp Med ; 66(5): 412-419, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27780009

RESUMEN

Identifying and refining small-animal models of tuberculosis that recapitulate aspects of human Mycobacterium tuberculosis infection can contribute to advancing our understanding of critical facets of the disease. To study the effects of very low-dose infections with 2 strains of M. tuberculosis on disease progression and survival in common marmosets, animals were challenged with strains Erdman and CDC1551 at doses ranging from 1 to 12 cfu. These data revealed that the susceptibility of marmosets to M. tuberculosis infection is influenced by strain virulence and initial dose. Marmoset infection with the Erdman strain, even at very low doses, resulted in rapid disease progression associated with severe weight loss, extensive pathology, and poor survival. By contrast, challenge with the less virulent CDC1551 strain resulted in slower disease progression, delayed weight loss, and prolonged survival. One marmoset infected with CDC1551 at a very low dose (approximately 1 cfu) was able to contain and control M. tuberculosis infection in a subclinical state that persisted as long as 300 d. These findings underscore the critical importance of understanding the heterogeneity in host outcome that can arise in association with different infectious doses and strains in the marmoset model of tuberculosis.


Asunto(s)
Callithrix/microbiología , Tuberculosis/microbiología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Interacciones Huésped-Patógeno , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tuberculosis/diagnóstico por imagen , Tuberculosis/patología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...